Synthesis and characterization of some new dinuclear complexes of Ni(II), Pd(II) and Pt(II) with bulky substituted thioether ligands

N. H. Buttrus * and A.M. Ameen *Dept. of Chem. , College of Science , University of Mosul , Mosul – IRAQ , E-mail Email : nabeel_buttrus@yahoo.com .

Abstract

A series of new multidentate ligands $(L^{1}-L^{4})$, 1,1,2,2-*tetrakis* [2-(benzylthio)ethylthio]ethylene (L^{1}) ,1,1,2,2-*tetrakis* [2-(o-tolylthio) ethylthio]) ethylene (L^{2}) , 1,1,2,2-*tetrakis* [3-(p-chlorophenylthio) ethylthio] ethylene (L^{3}) and 1,1,2,2-*tetrakis* [2-(o-aminophenylthio) ethylthio] ethylene (L^{4}) were prepared from the reaction of equimolamar amount of (4-mercapto-2-thia-1-butyl benzene or o-methyl-4-mercapto-1-thia-1-butyl benzene or p-chloro-4-mercapto-1-thia-1-butyl benzene or o-amino-4-mercapto -1-thia-1-butyl benzene and KOH) with tetrachloroethylene in (4:4:1) molar ratio . Reaction of the above ligands with nickel (II), palladium (II) and platinum (II) chloride salts gave the complexes of the general formulas : $[M_2(L)Cl_4]$ and $[Ni_2(L)Cl_2]Cl_2$ M=Ni(II), Pd(II) and Pt(II), L=L¹-L⁴. The synthesized ligands have been characterized on the basis of their elemental analysis , FTIR, ¹H, ¹³C NMR, and their complexes were characterized by elemental analysis metal content, UV-Vis . spectroscopic technique ,conductivity measurements and magnetic measurements.

On the basis of these studies , a four coordinate tetrahedral or square planar geometry around the metal ions in the complexes has been proposed . **Keywords** : bulky substituted thioether , Ni(II) , Pd(II) ¹, Pt(II) complexes , square planar complexes .

1. Introduction

A large number of dinucleating ligands containing thiophenolate subunits have been reported in the past several years ¹⁻³. These ligands represents soft analogues of the more familiar phenolate systems , and offer the potential of forming dinuclear complexes of catalytically active soft late transition metal ions such as Rh , Ir , Pd and Pt ⁴⁻⁵ . In order to enhance the affinity for these metal ions further soft donor may be introduced into the

ligand backbone . Among these , Phosphane functions , R_2P or RS^- , are immediately evident , because these bind very strongly to the late 4d and 5d elements $^{6-7}$.

4,5-disulfanyl-1,3-dithiole-2-thionate (dmit²⁻) has been used extensively for preparation of mononuclear bis-dmit and tris-dmit complexes of transition and main group metals. These sulfur rich molecules have the potential for novel electronic properties owing to the extensive π -overlap of the sulfur and metal based d-orbitals⁸⁻⁹

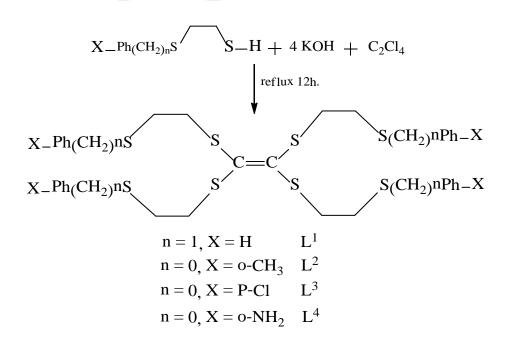
The two new bis-alkylpyridyl substituted dmit ligands , 4,5-bis(2pyridylmethylsulfanyl)-1,3-dithiole-2-thione (bpmdmit), and 4,5-bis(2pyridylmethylsulfanyl)1,3-dithiole-2-thione(bpedmit) and some of their transition metal complexes have been prepared . Two basic structural types for the complexes [MX₂L] , (M=Ni,Co,Cu,Pd,L=bpmdmit or bpedmit , X=Cl or Br) were determined by x-ray crystallography ¹⁰.

The coordination mode of thioether-pyrazole ligands , 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane(bdtp) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane(bddo) ligands in Pd(II) complexes containing a diphosphine ligand is determined by subtle changes in the size of the bridge between the two phosphorus atoms . The ¹H NMR and ³¹P(¹H)NMR at variable temperature prove that the hemilabile character of the bdtp ligand depend on the diphosphine ligand ¹¹.

Three new nickel complexes have been synthesized with the ligand Hbss (4-mercapto-2-thia-1-butylbenzene) and Hbsms (2-benzylsulfonyl-2-methyl-5-propanethiol). The complex [Ni(bss)₂] is mononuclear with an S₄ coordination environment . The complexes [Ni₃(bss)₄](BF₄)₂ and [Ni₃(bsms)₄](BF₄)₂ are linear trinuclear complexes that can synthesized either directly from the ligands Hbss and Hbsms in a reaction with [Ni(BF₄)₂]. Crystals suitable for x-ray diffraction were obtained for [Ni₃(bss)₄](BF₄)₂ and the structure was determined by single crystal X-ray, which indicate that the nickel centers are a square planar environment ¹².

As a part of a chelating system thioether group are known to coordinate to metal ions 13,14 , and in view of these interesting results and as continuation to our studies on transition metal complexes with sulfur containing ligands $^{15-17}$, we have prepared here a new ligands (L¹-L⁴) and their dinuclear complexes with Ni(II), Pd(II) and Pt(II) ions.

2. Experimental 2.1 Materials


All preparation were carried out in reagent grade solvents . All chemicals used in the synthesis were obtained from Aldrich , Fluka or B.D.H and were used without further purification .

2.2 Preparation of the ligands

The starting materials were prepared according to the literature $method^{(13)}$.

Preparation of 1,1,2,2-tetrakis[2-(benzylthio)ethylthio]ethylene (L¹):

To a solution of 4-mercapto-2-thia-1-butyl benzene (0.73g , 0.004 mol) in 20 ml toluene was added to a solution of (0.23g , 0.004 mol) of KOH in ethanol 10 ml, then the mixture was added to a solution of tetrachloroethylene (0.17 g , 0.001 mol) in 10 ml ethanol . The mixture was stirred under reflux for 12h. on cooling the precipitate was obtained which was filtered off , washed several times with ethanol to remove the formed KCl , then it was washed with diethylether and then dried under vacuum for 4h . The preparation of the other ligands L^2-L^4 using similar procedure as shown in Scheme (1)

Scheme (1): Preparation of the ligand

2.3 Preparation of the complexes : 2.3.1 Preparation of [Ni₂(L)Cl₄] or [Ni₂(L)Cl₂]Cl₂ complexes :

A solution of NiCl₂.6H₂O (0.47g , 0.002 mol) in (10 ml) ethanol was added to a stirred solution of the ligand (0.001 mol)in (10 ml) tetrahydro furan (THF). The mixture was refluxed for 2h . The mixture was left 12h. at room temperature to give the precipitate , which was filtered off several times with ethanol and diethylethe then dried under vacuum for several hours .

2.3.2 Preparation of [Pd_2LCl_4] : $(L=L^1-L^4)$:

The salt Na₂PdCl₄ was prepared by heating (0.35 g, 0.002 mol) of PdCl₂ and (0.23 g, 0.004 mol) of NaCl in 5 ml distilled water and added gradually with continuous stirring to (0.76 g, 0.001 mol) of ligand (L¹) in 20 ml of tetrahydrofuran . The mixture was refluxed for 2h , the solvent was evaporated in vacuum . Red brown powder was obtained , it was washed several times with distilled water and diethylether , the precipitate was dried under vacuum . The other complexes were prepared similarly .

2.3.3 Preparation of [Pt_2LCl_4] : (L=L^1-L^4) :

To a solution of L^1 (1,1,2,2-tetrakis[2-(benzylthio)ethylthio]ethylene) (0.76 g , 0.001 mol) in 20 ml tetrahydrofuran was added a solution of K₂PtCl₄ (0.83 g , 0.002 mol) in a 5 ml distilled water . The mixture was refluxed for 2h , the solvent was evaporated in vacuum to half volume , golden precipitate was obtained which washed several times with distilled water and diethylether , the precipitate was dried under vacuum for several hours .The other complexes were prepared similarly .

2.4 Physical measurements

Elemental analysis of the isolated complexes were accomplished by using (elementar vario micro cube) at Department of Chemistry , Liverpool University (U.K.). Metal content estimation were done on Sens AA GBC SCIENTIFIC EQUIPMENT 3000 Atomic absorption spectrophotometer at Mosul University , College of Basic Education. Conductivity measurements for 10⁻³ M solution of the complexes in (DMF) were carried out on Jenway 4510 conductivity meter at Mosul University , College of Science .The infrared spectra for ligands and complexes were recorded on a FT-IR (Brucker Alpha Sample Compartment RT-DlaTGS at the range (200-4000 cm⁻¹) without using KBr or CsI .This measurements were carried out at

Department of Chemistry , Liverpool University . The UV/Vis spectra were recorded on a Shimadzu UV-160 spectrophotometer for 10^{-3} M solution of the complexes in DMF using 1 cm quartz cell . Magnetic susceptibililities values were corrected for diamagnetic contribution using Pascal's constants and measured at 25°C on the solid state using Bruker B.M.6 instruments .

3. Results and discussion

The multidentate ligands (L^1-L^4) , not previously reported in the literature were prepared according to the following scheme (1), by treatment of 4-mercapto-2-thia-1-butyl benzene or 2-methyl-4-mercapto-1-thia-1-butylb-enzene or 4-chloro-4-mercapto-1-thia-1-butylbenzene or 2-amino-4-mercapto-1-thia-1-butylbenzene ,with potassium hydroxide and tetrachl-oroethylene , yielded the desired products . The ligands were characterized by elemental analysis , IR , ${}^{1}H$, ${}^{13}C$ NMR spectroscopy and electronic spectra . The IR and NMR data are in accordance with the proposed structures . Disappearance of the SH stretching vibration , related to the thiol functional group along with the growing of strong bond in the region 829-857 cm⁻¹ due to the C-S bands , indicates the formation of the ligands , as well as the removal of the chloride ions confirmed by sodium fusion test and elemental analysis.

The ligands (L^1-L^4) are white to brown in color, are isolated in good yield and are pure by NMR and elemental analysis (Table 1).

3.1 ¹H, ¹³C NMR Spectra :

the ¹H , ¹³C – NMR spectra of these ligands are first order at the field strength employed and peak assignment were straight forward . The ¹H NMR spectrum of (L¹) exhibit the aromatic protons were observed in the region 7.249 - 7.343 (m , 20 H) , 3.945 (t , H) , 3.946 – 3.879 (m , 8H , CH₂) , 3.819 (t , 1H) , 3.725 (s, 1H) , 3.146 (m , 3H) , 2.88 – 2.827 (m , 3H) , 2.693 – 2.646 (m , 5H) , 2.572 (d , 2H) for L¹ , and 6.840 – 7.411 (m , 16H , Ar) , 4.452 (S , 8H , NH₂) , 3.134 (m , 8H , CH₂) ; 2.898 (m , 8H , CH₂) for L⁴ , the ¹³C – NMR spectrum shows peaks at 30.4-35.33 ppm for (a – c) CH₂ , 127.5 for c = c and 128.9 – 139.0 ppm for aromatic carbon for L¹ , and 22 . 0 – 38.2 for (a – c) CH₂ and 125.5 for (C = C) and 128.47 – 148.0 ppm for aromatic carbon for L⁴ as in fig (1).

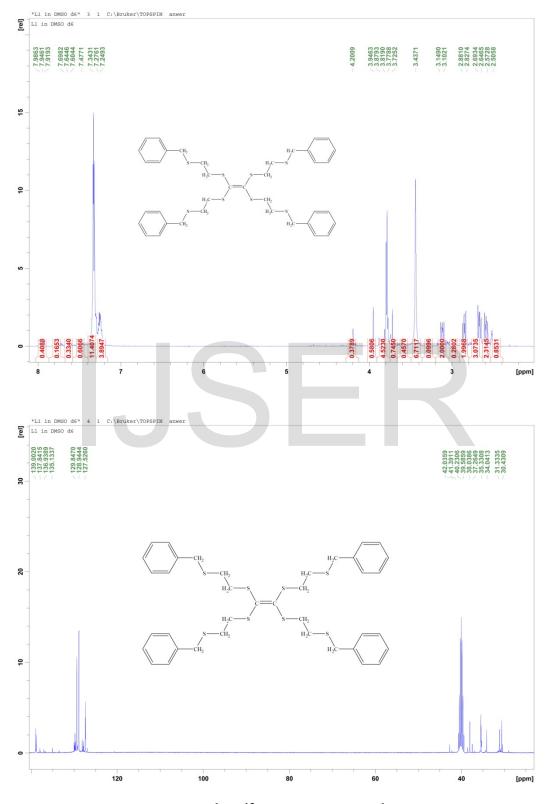


Fig 1a: ¹H, ¹³C, for ligand (L¹)

1716

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518

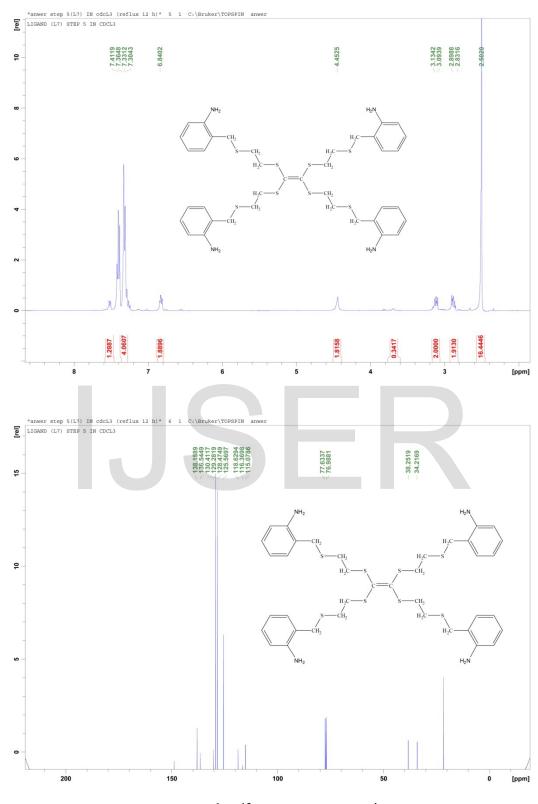


Fig. 1b : ${}^{1}H$, ${}^{13}C$ for ligand(L^4).

The reaction of these ligands (L^1-L^4) with nickel(II), palladium(II) and platinum(II) chloride in a (1:2) ligand to metal molar ratio gives the complexes of the formulas $[M_2(L)Cl_4]$ and $[Ni_2(L)Cl_2]Cl_2$, M = Ni, Pd, Pt, $L = L^1-L^4$. The elemental analysis are consistent with the proposal molecular formula that show the ratio of ligand to metal is (1:2).

The physical properties of the solid complexes are listed in Table (2). The complexes are quite stable in air , fairly stable to heat and melt or decompose at abouts 135 – 309 °C. They are insoluble in common organic solvents, however, soluble in dimethyl formamide (DMF) or dimethyl-sulfoxide (DMSO). The electrical molar conductance of the complexes in 10^{-3} M (DMF) solution within the range 16-55 ohm $^{-1}.\rm cm^2$ mol $^{-1}$, indicating the neutral nature of the complexes excepts for the complexes of the formula $[Ni_2(L)Cl_2]Cl_2$ which are (1:2) electrolyte in nature 18 . This is consistent with stoichiometry assumed for the complexes on the basis of analytical data.

3.2 Infra-red Spectra

The most important IR assignments of the ligands as well as their bonding sites Table (3) have been determined by a careful comparison of the spectra of the ligands with those of their complexes . The IR spectra of the ligands showed a medium band at (1618 – 1660) cm⁻¹ assigned to v(C = C) vibration and this band remained unchanged in the spectra of all complexes . The v(C - S) absorption band appeared at (829-857) cm⁻¹ in the free ligands was found to appear at lower frequency in the spectra of all the complexes except in complexes (4,8,12) the shift of v(C - S) is upward by (841-848 cm⁻¹) indicating the involvement of sulphur atoms of the ligands in the coordination with the metal ion ¹⁹. The IR spectra of the ligand L⁴ exhibited a band at the 3343 cm⁻¹ region attributed to $v(NH_2)$ and this band remained almost constant upon coordination of this ligand with the metal ion. This indicates that the NH₂ group had not participated in the coordination .

Moreover , the IR spectra of the complexes showed new bands at 350-375 cm⁻¹ which tentatively assigned to v (M – S) respectively (M = Ni , Pd , Pt) ²⁰. Further , the IR spectra of the complexes showed another new band in the region of 295 – 325 cm⁻¹ which may well be due to v (M – Cl) frequency ²¹ . This band split into two bands and this can be taken as evidence for square planar cis configuration of these complexes (M = Pd or Pt) . The effective magnetic moment values of the complexes and presented in Table (2) .The Ni(II) complexes has a μ_{eff} value of 3.15 – 3.65 B.M which suggest a tetrahedral geometry , while all Pd(II) and Pt(II) are diamagnetic as expected for d⁸-metal ion in a square plane field²² .

3.3 Electronic Spectra :

In order to obtain some more information about the coordination behaviors of the metal ions, the electronic spectra of the complexes have been recorded . The tentative assignments of the absorption bands from the electronic spectra of the ligands and their complexes and listed in Table (3). Then π^* transition associated with the ligands were found in the region cm⁻¹. The Ni(II) complexes exhibits bands at (12919 – 14492 cm⁻¹) indicating the transition ${}^{3}T_{1}(F) \longrightarrow {}^{3}T_{1}(P)(\nu_{3})$ in a tetrahedral geometry 23 . The (d – d) bands for the spectrum of the complexes of Pd(II) and Pt(II) having low intensities appeared at (22727-25641 cm⁻¹) were assigned to the ${}^{1}A_{1}g \longrightarrow {}^{1}A_{2}g$ transition , in square planer environment around Pd(II) and Pt(II) with D₄h symmetry 24 .

On the basis of the foregoing results , the ligand used is this study , coordinate to the metal ions in tetrahedral and square planner fashion from the S sites of the ligand forming the dinclear complexes as shown in fig. (2).

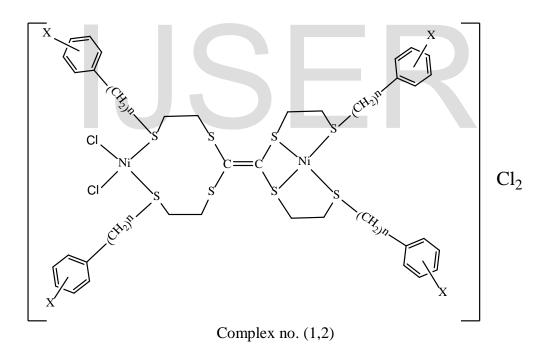
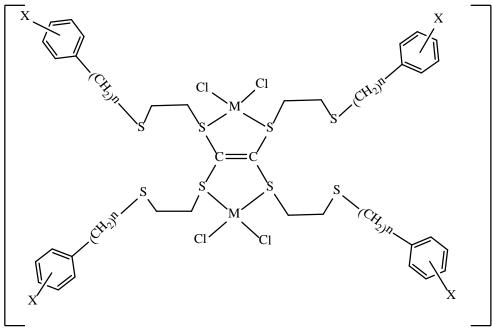



Fig 2a: Suggested structure for nickel complexes

International Journal of Scientific & Engineering Research, Volume 5, Issue 2, February-2014 ISSN 2229-5518

 $M = Ni \;, \; Pd \; or \; Pt \;, \; n{=}0,1$ Fig. 2b : Suggested structures for the complexes

Table (1) : Some physical properties and elemental analysis of theprepared ligands .

Ligand	Chemical	M.p	Color	Yield	Analysis found / (calc.)				
Seq.	formula	(°C)	COIOI		C%	H%	N%	S%	
L^1	$C_{38}H_{44}S_8$	231-233	Baiga	Beige 65	59.71	5.42		33.64	
	C38114458	231-233	Deige		(60.31)	(5.82)		(33.86)	
L^2	$C_{38}H_{44}S_8$	285-288	Pale	6/	60.20	5.61		32.90	
L	C ₃₈ Π ₄₄ S ₈		yellow		(60.31)	(5.82)		(33.86)	
L ³	$C_{34}H_{32}S_8Cl_4$	255-258	White	63	48.46	3.64		30.23	
					(48.68)	(3.81)		(30.54)	
L^4	$C_{34}H_{40}N_4S_8$	130 d	Light	72	53.99	5.51	7.86	32.74	
			brown	12	(53.68)	(5.26)	(7.36)	(33.68)	

d= decomposition

					Analysis found / (calc.)						
No.	Complexes	M. p. (°C)	Colour	Yield	C%	H%	N%	S%	M%	$\begin{array}{c} \Lambda_{M} \\ Ohm^{-1}.cm^{2}.mol^{-1} \end{array}$	μ_{eff} B.M
1	[Ni ₂ L ¹ Cl ₂]Cl ₂	156 d	Brown	96	44.30 (44.51)	4.15 (4.29)		24.76 (24.98)	11.18 (11.56)	138	3.65
2	$[Ni_2L^2Cl_2]Cl_2$	218 d	Light brown	51	44.75 (44.90)	4.26 (4.33)		24.87 (25.21)	11.00 (11.56)	121	3.15
3	$[Ni_2L^3Cl_2]$	150 - 152	Light brown	50	42.35 (42.70)	3.22 (3.34)		25.92 (26.79)	9.59 (10.70)	14	3.53
4	[Ni ₂ L ⁴ Cl ₄].2H ₂ O	307 - 309	Light brown	65	38.67 (40.02)	4.17 (3.92)	5.30 (5.49)	24.26 (25.11)	11.65 (11.52)	29	3.58
5	$[Pd_2L^1Cl_4]$	140-142	Brown	94	40.06 (41.05)	3.67 (3.96)		22.18 (23.04)	18.21 (19.15)	20	Dia
6	$[Pd_2L^2Cl_4]$	182 d	Dark brown	60	40.76 (41.05)	3.81 (3.96)		22.91 (23.04)	17.70 (19.10)	55	Dia
7	$[Pd_2L^3Cl_4]$	200 d	Dark brown	95	33.91 (34.20)	2.77 (2.68)		21.61 (21.46)	16.12 (17.84)	22	Dia
8	$[Pd_2L^4Cl_4]$	260 d	Dark brown	68	36.01 (36.62)	3.70 (3.59)	4.49 (5.02)	22.59 (22.98)	18.71 (19.08)	50	Dia
9	$\begin{matrix} [Pt_2L^1Cl_4].2H_2\\ O \end{matrix}$	135 d	Orange	78	34.43 (35.39)	3.32 (3.41)		19.33 (19.87)	^a	10	Dia
10	$[Pt_2L^2Cl_4]$	117 - 119	Black	72	35.23 (35.39)	3.53 (3.41)		19.48 (19.87)	^a	39	Dia
11	$[Pt_2L^3Cl_4]$	170 - 172	Brown	63	28.92 (29.77)	2.43 (2.33)		18.79 (18.68)	^a	71	Dia
12	$[Pt_2L^4Cl_4]$	142-145	Olive green	62	32.01 (31.57)	3.61 (3.09)	4.37 (4.33)	20.20 (19.81)	a	41	Dia

Table (2): Analytical data and physical properties of the complexes .

d= decomposition , a= platinum cathode is not available

Compound	ν (C=C)	v (C-S)	v (M-S)	v v (M-		U.V./Visible Band maxima
seq.				(NH ₂)	Cl)	$\lambda_{\max} (cm^{-1})$
L^1	1653(m)	857(m)				34246,37593
L^2	1647(m)	839(m)				35211
L ³	1655(m)	849(m)				35714,40983
L^4	1618(s)	829(w)		3343(b)		32467
1	1662(m)	829(m)	362(w)		305(w) 325(w)	12919, 32679
2	1655(m)	829(m)	365(w)		300(m) 326(m)	14450
3	1655(m)	831(m)	352(w)		297(m) 315(w)	14492,28571
4	1620(m)	877(w)	360(w)	3327(b)	-294(w) 320(m)	14409 ,33333
5	1662(w)	822(w)	370(w)		295(m) 325(m)	24630
6	1653(m)	822(s)	352(w)		305(m) 325(m)	22727
7	1662(m)	820(w)	350(w)		295(m) 322(w)	24038
8	1624(m)	872(w)	350(w)	3347(b)	297(w) 315(m)	23980
9	1661(m)	835(w)	355(w)		300(m) 325(w)	24038
10	1653(m)	830(w)	375(w)		290(w) 315(w)	23474
11	1653(m)	835(w)	360(w)		280(w) 305(w)	25000
12	1613(w)	870(w)	370(w)	3339(b)	297(w) 310(w)	25641

Table (3) : Infrared , electronic spectra of the free ligands and their metal complexes

4. Conclusion :

The results of this study clearly indicated that the sulfur rich ethylene ligands are coordinate to Pd^{2+} and Pt^{2+} as tetradentate fashion while for Ni^{2+} are tetradentate and hexadentate fashion from sulfur atoms of the ligands and the chloride ions of the metal ions .

References

1. N. H. Pilkington and R. Robson, "Complexes of binucleated ligands III. Novel complexes of a macrocyclic binucleating ligands". Aust. J. Chem. 23 , 2225-2236 (1970).

2. J. G. Hughes and R. Robson ,"Complexes of binucleating ligands XI . Some palladium complexes of a ligand containing a bridging thiophenoxide component", Inorg. Chim. Acta , 35, 87-92 , (1979) .

3. S. Brooker ,"Complexes of thiophenolate-containing Schiff base macrocycles and their amine analogues" , Coord. Chem. Rev. , 222 , 35-56 , (2001) .

4. C. K. Mckenzie and R. Robson , Inorg. Chem. 26 , 3615 - 3621 , (1987). 5. A. Christensen , C. Mayer , F. Jensen , A. D. Bond and C. J. Mekenzie , Dalton Trans , 108 - 120 , (2008).

6. J. D. G. Correia , A. Domingos , I. Santos and H. Spies ,"Synthesis and characterization of mixed-ligand oxorhenium (V) complexes with new [(PNO/S)(S)] donor atom sets", J. Chem . Soc. Dalton Trans , 2245 - 2250, (2001).

7. T. Kniess , C. Fernandes , I. Santos , W. Kraus and H. Spies ," Silylated mixed-ligand rhenium complexes with the [PNS/S] donor atom Set" , Inorg. Chim. Acta , 348 , 237 - 241 (2003) .

8. S.J. loeb and J.R. Mansfield ,"Platinum (II) complexes of the tridentate thioether ligands RSH $(CH_2)_3S(CH_2)_3SR$ (R=Et, iP_r ,Ph). Structures of $[PtCl(iP_rS(CH_2)_3S(CH_2)_3SiP_r)][BF_4], [Pt(PhS(CH_2)_3S(CH_2)_2SPh)][BF_4]$ and $[Pt(PPh_3)(iPrS(CH_2)_3SiPr][BF_4]_2CH_2Cl_2$ ", Can J. Chem. , 74 , 1377 – 1390, (1996).

9. R. M. Olk, B. Olk, W. Dietzsch, R. Kirmse and E. Hoyer, "The chemistry of 1,3-dithiol-2-thione-4,5-dithiolate(dmit)" Coord. Chem. Rev., 117, 99-131, (1992).

10. P. Cassox , L. Valade , H. Kobayashi , A. Kobayashi , R. A. Clark and A. Underhill ,"Molecular metals and super conductors derived from metal complexes of 1,3-dithiol-2-thione-4,5-dithiolate (dmit)", Coord. Chem. Rev, 110 , 115-160 , (1991) .

11. J. Becher , A. Hazell , C. J. Mekenzie and C. Vestergaard ,"Divalent transition metal complexes of alkylpyridyl derivatized dmit ligands" , Polyhedron , 19 , 665 - 672 , (2000) .

12. J. A. W.Verhagen, D.D.Ellis , M. Lutz, A.L. Spek and E. Bouwman ,"Synthesis and characterization and crystal structures of new nickel complexes S_4 coordination spheres ; an unprecedented rearrangement during ligand synthesis ", J. Chem. Dalton Trans, 1275-1280, (2002).

13. J. A. W. Verhagen , M. Beretta , A. L. Spek and E. Bouwman ,"New nickel complexes with an S_4 coordination sphere ; synthesis , characterization and reactivity towards nickel and iron complexes ", Inorg-Chim. Acta , 357 , 2687 – 2693 , (2004) .

14. C. Bing , W. F. F. Tzeng , C. M. Che. , H. Y. Chao, K.K. Cheung and S. M. Peng ,"Structures and photoluminescence of dinuclear platinum (II) and palladium (II) complexes with bridging thiolates and 2,2'-bipyridine or 2,2':6',2"-terpyridine ligands" , J. Chem. Soc. Dalton, Trans. , 1017-1024 , (1999).

15. N. H. Buttrus , E. A. Abdalrazaq and A. K. AL-Sger ,"Synthesis and characterization of some new semiconducting dinuclear platinum (II) complexes containing 1,1,2,2-*tetrakis* (substituted phenylthio)ethylene ", Int. J. Chem. Sci: 5(3), 1111 – 1120, (2007).

16. N. H. Buttrus , S. N. Mohammed , A. A-Subah and E. Abdalrazaq ,"synthesis and characterization of Ni^{2+} , Cu^{2+} and Zn^{2+} complexes with Benzimidazole-2-thionate , Diphosphene and their reaction with iodine", Asian J. Chem. 25(9), 4856-4860, (2013).

17. N. H. Buttrus and F.Saeed ,"Synthesis and structural studies on some transition metal complexes of bis-(benzimidazole-2-thio) ethene , propene and butene ligands", Res. J. Chem. Sci. , 2(6), 43 - 49, (2012).

18. W.J. Geary, Coord. Chem. Rev., 7, 8, (1971).

19. N. H. Buttrus , A. K. Hussain and T. A. K. AL-Allaf ,"Synthesis and characterization of new trinuclear palladium (II) and platinum (II) complexes containing Phosphorus-Sulphur ligands", Asian . Chem. , 15(3) , 1617-1622, (2003).

20. L. J. AL-Hayly, N. H. Buttrus, F. Tariq and T. A. K. AL-Allaf ,"Trinuclear platinum Group Metals Complexes with *o*aminophenylthiolatotin(IV)", J.J. Appl. Sci, 17(1), 64-70, (2005).

21. T. A. K. AL-Allaf, I. A. Mustafa and S. E. AL-Muktar, "Studies on platinum (II) and palladium (II) complexes of some N,N'-disubstituted thiourea derivatives", Transition Met. Chem., (8), 1, (1993).

22. N. H. Buttrus ,"Synthesis and characterization of new bulky binuclear palladium (II) complexes", Mu'tah J. Res, and Studies 12(3), 225-235, (1997).

23. N. H. Buttrus , S. A. Ahmed and W. M. Jameel, "Synthesis and characterization of homo and hetero dinuclear and trinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes with 26-membered N_4S_4 donor macrocyclic ligand", Res. J. Chem. Sci. , 3(11), 47-54 , (2013).

24. R. G. Mcdonald , M. J. Riley and M. A. Hithman ,"Analysis of the vibrational fine structure in the electronic spectrum of the planar tetrachlorocuprate (II) ion in N-(2-amino ethyl) morpholinium tetrachlorocuprate (II) : evidence for a pseudo tetrahedral distortion in the ${}^{2}A_{1g}$ excited electronic state ", Inorg . Chem. , 28, 752-758 , (1989) .

IJSER